An Adaptive Anomaly Detector for Worm Detection
نویسندگان
چکیده
We present an adaptive end-host anomaly detector where a supervised classifier trained as a traffic predictor is used to control a time-varying detection threshold. Using real enterprise traffic traces for both training and testing, we show that our detector outperforms a fixed-threshold detector. This comparison is robust to the choice of off-theshelf classifier and to a variety of performance criteria, i.e., the predictor’s error rate, the reduction in the “threshold gap,” and the ability to detect incremental worm traffic that is added to real life traces. Our adaptive-threshold detector is intended as a part of a distributed worm detection system. This distributed system infers system-wide threats from end-host detections, thereby avoiding the sensing and resource limitations of conventional centralized systems. The system places a constraint on this end-host detector to appear consistent over time and host variability.
منابع مشابه
3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملAnti-worm Dynamics in Distributed Detection
This paper raises some interesting challenges that have arisen in design of an anomaly detection system in the Distributed Detection and Inference (DDI) project. Conventional detection schemes rely on observing traffic at central points, typically at the border of the enterprise. These schemes, while moderately successful, have several limitations, in their visibility into the network, and the ...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملAdaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum
A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...
متن کامل